Protein S secretion differences of missense mutants account for phenotypic heterogeneity.

نویسندگان

  • Y Espinosa-Parrilla
  • T Yamazaki
  • N Sala
  • B Dahlbäck
  • P G de Frutos
چکیده

To elucidate the molecular background for the heterogeneity in protein S plasma concentrations observed in protein S deficient individuals, the in vitro synthesis of recombinant protein S missense mutants was investigated. Six different naturally occurring mutations identified in the protein S gene (PROS1) of thrombosis patients were reproduced in protein S cDNA by site directed mutagenesis. Two mutants, G441C and Y444C (group A), were associated with low total plasma concentration of protein S. Modestly low protein S was found in families with R520G and P626L (group B) mutants. T57S and I518M (group C), which was associated with marginally low protein S, did not segregate with protein S deficiency in the respective families, raising doubts as to whether they were causative mutations or rare neutral variants. The 6 protein S mutants were transiently expressed in COS 1 cells. The Y444C mutant showed the lowest level of secretion (2.5%) followed by the G441C mutant (40%). Group B demonstrated around 50% reduction in secretion, whereas group C mutants showed normal secretion. Pulse-chase experiments demonstrated impaired protein S processing with intracellular degradation and decreased secretion into the culture media of group A and B mutants. Interestingly, there was a good correlation between in vitro secretion and the concentration of free protein S in the plasma of heterozygous carriers. These results demonstrate impaired protein S secretion to be an important mechanism underlying hereditary protein S deficiency and that variations in protein secretion is a major determinant of the phenotypic heterogeneity observed in protein S deficiency. (Blood. 2000;95:173-179)

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

HEMOSTASIS, THROMBOSIS, AND VASCULAR BIOLOGY Protein S secretion differences of missense mutants account for phenotypic heterogeneity

To elucidate the molecular background for the heterogeneity in protein S plasma concentrations observed in protein S deficient individuals, the in vitro synthesis of recombinant protein S missense mutants was investigated. Six different naturally occurring mutations identified in the protein S gene (PROS1) of thrombosis patients were reproduced in protein S cDNA by site directed mutagenesis. Tw...

متن کامل

Virulence Function of Pectobacterium atrosepticum Secretion System Mutants on Evaluation of Some Solanum tuberosum Resistance Genes

Background: P. atrosepticum is a commercially important pathogen. It causes blackleg in the field and soft rot of tubers after the harvest. This effect is due to secretion of depolymerases and other virulence factors by several mechanisms including T3SS Objectives: The effect of bacterial T3SS on Solanum tuberosum (S. tuberosum) varieties and its re...

متن کامل

Differences in endoplasmic-reticulum quality control determine the cellular response to disease-associated mutants of proteolipid protein.

Missense mutations in human PLP1, the gene encoding myelin proteolipid protein (PLP), cause dysmyelinating Pelizaeus-Merzbacher disease of varying severity. Although disease pathology has been linked to retention of misfolded PLP in the endoplasmic reticulum (ER) and induction of the unfolded protein response (UPR), the molecular mechanisms that govern phenotypic heterogeneity remain poorly und...

متن کامل

Differences in growth promotion, drug response and intracellular protein trafficking of FLT3 mutants

Objective(s): Mutant forms FMS-like tyrosine kinase-3 (FLT3), are reported in 25% of childhood acute lymphoid leukemia (ALL) and 30% of acute myeloid leukemia (AML) patients. In this study, drug response, growth promoting, and protein trafficking of FLT3 wild-type was compared with two active mutants (Internal Tandem Duplication (ITD)) and D835Y. Materials and Methods:FLT3 was expressed on fact...

متن کامل

Coexpression and interaction of wild-type and missense RS1 mutants associated with X-linked retinoschisis: its relevance to gene therapy.

PURPOSE X-linked retinoschisis (XLRS) is an early-onset retinal disease caused by mutations in retinoschisin (RS1), a multisubunit, extracellular protein implicated in retinal cell adhesion. Delivery of the normal RS1 gene to photoreceptors of retinoschisin-deficient mice results in prolonged protein expression and rescue of retinal structure and function. However, most persons with XLRS harbor...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Blood

دوره 95 1  شماره 

صفحات  -

تاریخ انتشار 2000